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The Continuous Casting Mold
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Choosing Fluid Flow Control Parameters 
to Maximize Product Quality

Herbertson et al, 74th Steelmaking Proceedings (Washington, DC), ISS, 1991.
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Why Electromagnetics?

• Improve internal microstructure
– Control superheat
– Discourage columnar grain formation
– Help reduce centerline segregation

• Improve control of fluid flow in the mold
– Stabilize meniscus velocity (0.2-0.4m/s)
– Maintain a uniform mold level
– Reduce fluctuations in the meniscus profile
– Reduce particle capture (bubbles, powder)
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Two Types of Electromagnetic 
Flow Control

– ElectroMagnetic Stirring (EMS)
• Creates a magnetic field that circulates flow 

using a moving AC current

– ElectroMagnetic Braking (EMBr)
• Utilizes a DC current to create a static magnetic 

field that brakes flow
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Mold Flow Control - Stirring

• Three main technologies available

– Slab Mold Electromagnetic Stirring

– Flow Control (FC) Mold Electromagnetic Stirring

– Multi Mode (MM) Electromagnetic Stirring 
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Slab Mold EMS

•Utilizes two stirrers close to the meniscus on each

wide side of the mold to create a circulating flow

•Helps homogenize meniscus temperature

Hackl et al,  ABB Automation Technologies AB, 2006 Manufactured by Nippon
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FC Mold EMS

•Utilizes one stirrer about 300mm beneath the meniscus on each wide 
side of the mold to accelerate flow towards the narrow faces

•Allows for control of the meniscus flow velocity

•Recommended for medium and low speed casters

Hackl et al,  ABB Automation Technologies AB, 2006 Manufactured by ABB
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Multi-Mode EMS

•Slows flow •Accelerates flow •Circulates flow

•Utilizes two stirrers on each wide side beneath the meniscus

•Choose between three different modes, as shown above

Hackl et al,  ABB Automation Technologies AB, 2006 Manufactured by JFE
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Mold Flow Control - Braking

• Three main technologies available

– Local Field EMBr

– Ruler EMBr

– Flow Control (FC) Mold
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Local Field EMBr

•Two “rectangles” of magnetic field are placed      
on either side of the SEN

•Used in thin-slab casting or where  
size/weight is an issue

Manufactured by ABB
Trippelsdorf et al, International Scientific Colloquium, 

Modeling for Material Processing, Hanover, 2003
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Ruler EMBr

Without EMBr With EMBr

•A single magnetic field is placed across the 
width of the mold just below the SEN

•Used for thin-slab casters

Manufactured by ABBTrippelsdorf et al, International Scientific Colloquium, 

Modeling for Material Processing, Hanover, 2003
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FC Mold

Without FC Mold With FC Mold

•Uses dual magnetic fields across the width of the 
mold located at the meniscus and below the SEN

•Used for medium to high-speed casting

Hackl et al,  ABB Automation Technologies AB, 2006 Manufactured by ABB
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Control – 3 Types

1) Use a prescribed field
• Most ineffective control method, as changing 

conditions are not taken into consideration

2) Use casting conditions to determine field
• Most common control method

• For example, the MM-EMS utilizes an online 
computer that chooses the correct mode of 
operation and field intensity based on casting 
conditions
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Control – 3 Types

3) Use a closed-loop feedback control system
• Desired type of control 
• ABB has developed EM Control for its FC Mold

– Used to keep meniscus velocity as constant as possible
– Predicts meniscus velocity by using the difference in height at 

two points on the meniscus

– Velocity and casting conditions are compared to a database of 
simulation results

– Changes in field strength are implemented if needed

Height difference implies meniscus velocity

Sensor Sensor

Kollberg et al,  Stahl and Eisen, 6/2005
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Evaluation of FC Mold and EM Control

•FC Mold reduces fluctuations in meniscus velocity

•EM Control improves upon velocity stabilization 

obtained with FC Mold

Kollberg et al,  Stahl and Eisen, 6/2005

•FC Mold decreases SEN jet angles and 
increases meniscus velocities

•EM Control attempts to create mold 
flow symmetry
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CCC Contributions 

• Directly measuring the meniscus velocity 
with a sensor is the next step toward 
advancing control technology
– CCC is currently researching

• This research will focus on experimental 
validation of casting simulations using 
electromagnetics in the mold
– A magnetic field will be calculated using 

ANSYS and imported into the FLUENT 
MagnetoHydroDynamics (MHD) module, 
which incorporates electromagnetic effects 
into the flow simulation
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MHD Theory

• When a conducting fluid of known velocity                flows 
through an applied magnetic field of known strength an 
electric current density                 is induced.  This current 
density causes a Lorentz force                   which acts upon the 
fluid.
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Analytical Example - EMBr
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Practical Example – LWB Nozzle

Nozzle Fluid Domain
•Two-fold symmetry allowed for one-
quarter of the domain to be meshed, 
which shortened computing time 

•Solved in FLUENT using 

the standard k-ε model for

3-D turbulent fluid flowNozzle Height = 740mm

Bore = 74mm

Port Angle = 0°

Port Height = 95mm

Port Width = 57mm
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¼ Mold Simulation

•Casting speed given

as 1.1m/min

Submergence depth

given as 151mm

•This mold was used for 

each simulated nozzle 

965mm

2400mm

127mm

•Yellow zone represents inlet to the mold
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Original Nozzle Results

0.315
Back-flow 

Zone Fraction

-1.55°Theta zx 

-14.64°Theta yx

1.72 m/sJet Speed 

-0.05 m/sVz 

-0.43 m/sVy 

1.66 m/sVx

Jet Characteristics

y

x

Note: Velocities are       
averages
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Original Nozzle Mold Results
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Original Nozzle Mold Meniscus Velocity

|V|max = 0.41m/s
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Redesign 1

Nozzle Fluid Domain
•Nozzle outlet pinched to reduce the 
backflow zone fraction  

Nozzle Height = 740mm

Bore = 74mm

Port Angle = 8°up, 
25°down 

Port Height = 77mm

Port Width = 57mm
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Redesign 1 Nozzle Results

0.20
Back-flow 

Zone Fraction

-2.06°Theta zx 

-10.70°Theta yx

1.70 m/sJet Speed 

-0.06 m/sVz 

-0.32 m/sVy 

1.67 m/sVx

Jet Characteristics

y

x

Note: Velocities are       
averages
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Redesign 1 Mold Results
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Redesign 1 Mold Meniscus Velocity

|V|max = 0.375m/s
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Redesign 2

Nozzle Fluid Domain •Nozzle jet angled 30º downward in 
an attempt to decrease meniscus 
velocity

Nozzle Height = 740mm

Bore = 74mm

Port Angle = 30°

Port Height = 95mm

Port Width = 57mm

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 30

Redesign 2 Nozzle Results

0.257
Back-flow 

Zone Fraction

-1.77°Theta zx 

-31.42°Theta yx

1.66 m/sJet Speed 

-0.04 m/sVz 

-0.86 m/sVy 

1.41 m/sVx

Jet Characteristics

y

x

Note: Velocities are       
averages
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Redesign 2 Mold Results
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Redesign 2 Mold Meniscus Velocity

|V|max = 0.35m/s
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Meniscus Velocity Comparison

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 34

Adding Ruler EMBr to 
Original Nozzle Mold

B
r

x
z

y

• The goal is to vary the 
meniscus velocity by using 
an electromagnetic brake 
as opposed to redesigning 
the nozzle

• A static DC field is 
applied to a band of fluid 
below the SEN
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Results

• We were unable to obtain run the 
simulation in FLUENT

• We are currently working with FLUENT 
developers to mend the issue, and 
expect to find a solution in the near 
future
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Summary

• There are two types of electromagnetic flow 
control that improve internal microstructure 
and control of fluid flow in the mold
– Electromagnetic Stirring

• Slab Mold EMS

• FC Mold EMS

• Multi-Mode EMS

– Electromagnetic Braking
• Local EMBr

• Ruler EMBr

• FC Mold
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Summary

• There are three ways to control 
electromagnetics
– Prescribed field
– Use casting conditions to determine field
– Closed-loop feedback control

• EM Control

• Magnetohydrodynamics
– Theory and governing equations
– Analytical example
– “Real-world” example


